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Abstract. This is a short collection of notes on the topology of big mapping

class groups stemming from discussions the author had at the AIM workshop
“Surfaces of infinite type”. We show that big mapping class groups are neither

locally compact nor compactly generated. We also show that all big mapping

class groups are homeomorphic to NN. Finally, we give an infinite family of
big mapping class groups that are CB generated and hence have a well-defined

quasi-isometry class.

Before beginning, the author would like to make the disclaimer that the arguments
contained in this note came out of discussions during a workshop at the American
Institute of Mathematics and therefore the author does not claim sole credit, espe-
cially in the case of Proposition 10 in which the author has completely borrowed
the proof.

For the entirety of the note, a surface is a connected, oriented, second countable,
Hausdorff 2-manifold. The mapping class group of a surface S is denoted MCG(S).
A mapping class group is big if the underlying surface is of infinite topological type,
that is, if the fundamental group of the surface cannot be finitely generated.

1.1. Topology of mapping class groups. Let C(S) denote the set of isotopy
classes of simple closed curves on S. Given a finite collection A of C(S), let

UA = {f ∈ MCG(S) : f(a) = a for all a ∈ A}.
We define the permutation topology on MCG(S) to be the topology with basis
consisting of sets of the form f · UA, where A ⊂ C(S) is finite and f ∈ MCG(S).
This topology agrees with the quotient topology coming from Homeo+(S) equipped
with the compact-open topology (see Appendix A for a discussion of this view-
point).

The first thing to note about the topology of big mapping class groups is the
following (reformulation of a) result of Hernández, Morales, and Valdez.

Theorem 1 ([11, Corollary 1.2]). Let S be a surface of infinite type and let F(S) =
{A ⊂ C(S) : |A| <∞}. Then ⋂

A∈F(S)

UA = {id}.

Proposition 2. Every big mapping class group is separable and metrizable.

Proof. Let S be an infinite-type surface. If, in a topological group, the identity can
be separated from any other point by an open set, then this is enough to guarantee
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the group is Hausdorff; hence, MCG(S) is Hausdorff by Theorem 1. Moreover,
by the countability of C(S), it is clear that the permutation topology is second
countable and hence first countable and separable. The Birkhoff-Kakutani theorem
says that every Hausdorff, first-countable topological group is metrizable. �

Note that another description of the permutation topology is as the coarsest topol-
ogy for which the orbit map ϕc : MCG(S) → C(S) given by ϕc(f) = f(c) is con-
tinuous for every c ∈ C(S), where we view C(S) as a discrete topological space. As
an immediate consequence of this description, we have:

Proposition 3. If S is of infinite type, then MCG(S) has a basis of clopen sets
(i.e. it is a zero-dimensional space). �

The curve graph of a surface S is the set C(S) together the edge relation defined by
a ∼ b if a and b have disjoint representatives. We will also denote the curve graph
by C(S). The extended mapping class group of a surface S, denoted MCG±(S), is
the group Homeo(S)/isotopy.

As in the finite-type setting, it has been shown by Hernández, Morales, and Valdez
and also independently by Bavard, Dowdall, and Rafi that automorphisms of the
curve graph are induced by mapping classes:

Theorem 4 ([12, 4]). Let S be an infinite-type surface. The automorphism group
of the curve graph C(S) is the extended mapping class group MCG±(S).

A topological space is Polish if it is separable and completely metrizable. A Polish
group is a topological group whose underlying topological space is Polish.

Corollary 5. If S is an infinite-type surface, then every closed subgroup of MCG±(S)
is Polish.

Proof. In Proposition 2 we saw that MCG(S) is separable and metrizable, so we
only need a complete metric. The same proof holds for MCG±(S). Enumerate the
elements of C(S) by the natural numbers and define d : MCG±(S)×MCG±(S)→ R
by

d(f, g) = inf
n∈N∪{0}

{2−n : f(ck) = g(ck) for all k < n}.

Now let ρ : MCG±(S) ×MCG(S) → R be the map given by ρ(f, g) = d(f, g) +
d(f−1, g−1). It is a standard exercise in descriptive set theory to prove that ρ is
a complete metric (note: this is a general construction for automorphism groups
of countable structures). It is then easy to see that every closed subspace of a
separable, complete metric space is again a separable, complete metric space. �

The symmetric group on N letters can also be given the corresponding permutation
topology and the same proof as the above corollary shows that it is a Polish group.
In fact, the proof of the above corollary actually yields a stronger statement about
mapping class groups:

Corollary 6. The (extended) mapping class group of every surface is isomorphic
(as topological groups) to a closed subgroup of the symmetric group on N letters. �



NOTES ON THE TOPOLOGY OF MAPPING CLASS GROUPS 3

The goal of the rest of the note is to investigate whether big mapping class groups
have a well-defined metric up to quasi-isometry, or, in other words, to investigate
whether the tools of geometric group theory apply to big mapping class groups. The
first issue is that big mapping class groups are uncountable and hence not finitely
generated. The next best case is to have a compactly-generated locally-compact
group as the standard results of geometric theory are known to hold in this setting.
Unfortunately, we now see that big mapping class groups are neither:

Proposition 7. If S is of infinite type, then every compact subset of MCG(S) is
nowhere dense.

Proof. Suppose V ⊂ MCG(S) is compact with non-empty interior. By translating,
we may assume that V contains the identity in its interior. Therefore, there exists
a finite subset A ⊂ C(S) such that UA ⊂ V . Choose c ∈ C(S) disjoint from each
curve in A. The Dehn twist Tc is in UA and the sequence {Tnc }n∈N contained in
UA is a discrete and closed subset of V , a contradiction. �

Corollary 8. If S is of infinite type, then MCG(S) is neither locally compact nor
compactly generated.

Proof. It is immediate from Proposition 7 that MCG(S) is not locally compact.
Now let V be a compact subset of MCG(S). Note that V n is compact for every
n ∈ N and hence nowhere dense by Proposition 7. In particular,

⋃
n∈N V

n is a
union of nowhere dense sets in a Polish space and hence has empty interior; thus,
V cannot generate MCG(S). �

As an aside to the current discussion, we can use our work thus far to give a concrete
description of the topology of MCG(S).

Corollary 9. If S is of infinite type, then MCG(S) is homeomorphic to the Baire
space NN (which in turn is homeomorphic to the space of irrational numbers RrQ).

Proof. By the Alexandrov-Urysohn theorem (see [13, Theorem 7.7]), every non-
empty Polish zero-dimensional space for which every compact set has empty interior
is homeomorphic to the Baire space NN. �

We have already seen that MCG(S) is not compactly generated (Corollary 8), but
we give here another – more hands on – proof that does not rely on knowing that
MCG(S) is Polish.

Proposition 10. If S is of infinite type, then MCG(S) is not compactly generated.

Proof. (The proof below was presented during the AIM workshop by Spencer Dow-
dall, but there was a larger working group that came up with the argument.) Let
V ⊂ MCG(S) be compact. Equip C(S) with the discrete topology. By definition
of the permutation topology, MCG(S) acts on C(S) continuously. Therefore, the
orbit map MCG(S)→ C(S) is continuous; so,

V · c = {f(c) : f ∈ V, c ∈ C(S)}
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is compact and hence finite for any c ∈ C(S). It follows that V n · c is finite as well
for every n ∈ N.

Choose a sequence {(ai, bi)}n∈N satisfying ai, bi ∈ C(S), i(ai, bi) > 0, and i(ai, aj) =
i(ai, bj) = i(bi, bj) = 0 for all i, j ∈ N such that i 6= j. Now for each k ∈ N, there
exists nk ∈ N such that Tnkbk (ak) /∈ Ak(ak), where Tbk is the Dehn twist about bk.

Now let
g =

∏
k∈N

Tnkbk .

Suppose there exists n ∈ N such that g ∈ V n. Observe that g(ak) = Tnkbk (ak)

for all k ∈ N; however, by construction, for k > n we have Tnkbk (ak) /∈ Ak(ak), a
contradiction. �

1.2. CB generated Polish groups. Fortunately, the recent work of Rosendal
provides a framework greatly enlarging the class of groups that have a well-defined
quasi-isometry type. We give a very brief description in the special setting of Polish
groups.

A subset A of a topological group G is coarsely bounded, or CB, if it has finite diam-
eter in every left-invariant continuous pseudo-metric on G. In the setting of Polish
groups, a useful characterization of coarsely bounded sets can be given:

Proposition 11 ([16, Proposition 2.7]). Let G be a Polish group. For every identity
neighborhood V in G, there exists a finite set F ⊂ G and k ∈ N such that A ⊂ (FV )k

if and only if A is coarsely bounded.

Before continuing, we need some terminology.

Define an order on left-invariant pseudo-metrics on a topological group G by declar-
ing d1 � d2 if d1 < K · d2 + C for some constants K and C. Note that any two
metrics that are maximal with respect to this ordering are quasi-isometric. A
metric on a topological space is compatible if it the metric topology agrees with the
topology of the space.

A topological group is CB generated if it has a coarsley-bounded generating set.
A set in a Polish space is analytic if it is the continuous image of another Polish
space.

The following theorem puts together pieces of Theorem 1.2, Proposition 2.52, The-
orem 2.53, and Example 2.54 from [16] to get a statement suited to our goal,
which is to establish a well-defined quasi-isometry class of a CB-generated Polish
group.

Theorem 12 (Rosendal). Let G be a a CB-generated Polish group. Let A be an
analytic coarsely-bounded generating set of G.

(a) There exists a left-invariant compatible maximal metric on G quasi-isometric
to the word metric associated to A. (Hence, every maximal metric is quasi-
isometric to the word metric associated to A.)

(b) If B is another analytic coarsely-bounded generating set of G, then the word
metrics associated to A and B are quasi-isometric.



NOTES ON THE TOPOLOGY OF MAPPING CLASS GROUPS 5

Note that the metric topology associated to a word metric is always discrete and
hence cannot be compatible with a non-discrete topological group. However, the
above theorem tells us that given a word metric (associated to a coarsely bounded
generating set), we can find a left-invariant compatible metric in its quasi-isometry
class. We can therefore talk about the quasi-isometry type of a coarsley-bounded
Polish group.

1.3. CB generated mapping class groups. With the language of Rosendal laid
out in the previous section, the question now becomes:

Which (if any) infinite-type surfaces have CB-generated mapping
class groups?

The above question was recently resolved by Mann-Rafi [14].

The goal of what follows is to exhibit a (countably) infinite family of surfaces
whose mapping class groups are CB generated. The author believes it is accurate
to attribute the origin of the ideas in the proofs of Theorem 13 and Lemma 14 to
Kathryn Mann and Kasra Rafi.

Theorem 13. If S is an infinite-genus surface with a finite number of ends, none
of which are planar, then MCG(S) is CB generated.

Before getting to the proof, we give a lemma that provides us with many coarsely-
bounded subsets of MCG(S).

We call a finite-type connected subsurface whose boundary components are all sep-
arating, essential curves and whose complementary components are all unbounded
a star surface. Given a star surface K in a surface S, we can view C(K) as a subset
of C(S) and MCG(K) as a subgroup of MCG(S). For a star surface K, define

UK = {f ∈ MCG(S) : f(a) = a for all a ∈ C(K)}.
It is not hard to see that UK is a clopen subset of MCG(S) (in fact, there exists a
finite subset A of C(S) such that UK = UA).

The following proofs will rely heavily on a homeomorphism called a handle shift
that was introduced in [15]. For the definition and details about handle shifts we
refer the reader to either [15] or [1].

Lemma 14. Let n ∈ N with n ≥ 2 and let S be an infinite-genus surface with
n ends, all of which are non-planar. If K is a star surface in S with n boundary
components, then UK is coarsely bounded in MCG(S).

Proof. Let U = UK . We will use the characterization of coarsely bounded given
in Proposition 11. Let V a neighborhood of the identity. By replacing V with a
smaller neighborhood of the identity, we may assume, without loss of generality,
that there exists a star surfce Σ with n boundary components such that K ⊂ Σ
and

V = UΣ = {f ∈ MCG(S) : f(a) = a for all a ∈ C(Σ)}.

Let f ∈ U and let X1, . . . , Xn denote the closures of the components of Σ r K.
For each i ∈ {1, . . . , n}, there exists a handle shift hi and an integer mi such that
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i i

Figure 1. A 3-ended surface with star surface K and the handle
shifts h1 and h2 represented from the proof of Theorem 13.

hmii (Xi ∪ f(Xi)) ∩ Σ = ∅. Now, hmii (Yi) is homeomorphic to Yi, where Yi is the
component of S rK containing Xi. Therefore, we can find a homeomorphism gi
supported in hmii (Yi) such that g ◦ hmii ◦ f(a) = hmii (a) for every a ∈ C(Xi). Let

gi = h−mii ◦ g−1 ◦ hmii and note gi ∈ 〈F ∪ V 〉 as g ∈ V . Now f(a) = gi(a) for every
a ∈ C(K ∪Xi).

Notice that the supports of the gi are pairwise disjoint and hence we can define
g = g1 · · · gn and it follows that g(a) = f(a) for all a ∈ C(Σ) as Σ = K∪X1∪· · ·∪Xn.
In particular, g−1 ◦ f ∈ V . Now let k = 1 + n+ 2

∑n
i=1 |mi|. We have shown that

U ⊂ (FV )k and hence U is coarsely bounded. �

We now proceed to the proof of Theorem 13:

Proof of Theorem 13. If S is the Loch Ness Monster surface, that is, if it is one
ended, then Mann and Rafi have proved that MCG(S) is coarsely bounded [14], so
we will assume that S has at least two ends.

Let n denote the number of ends of S and choose a labelling of the ends {e1, . . . , en}.
Choose a star surface K of S with genus 2(n−1) and with n boundary components.
Choose n−1 pairwise-commuting handle shifts h1, . . . , hn−1 satisfying the following
conditions

(i) h+
i = en for every i ∈ {1, . . . , n− 1},

(ii) h−i 6= h−j for i 6= j ∈ {1, . . . , n− 1},

(iii) S r
⋃n−1
i=1 supp(hi) is connected and of genus 0, and
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Figure 2. Curves in a Lickorish generating set for MCG(K).

(iv) the intersection of the support of hi with K has genus 2,

where h+
i is the attracting end of hi and h−i is the repelling end. Up to homeomor-

phism, the {hi}n−1
i=1 and K are as in Figure 1 (in the 3-ended case).

For distinct i, j ∈ {1, . . . , n} choose a mapping class σij such that σij(K) = K,
σij(ei) = ej , σij(ej) = ei, and σij(ek) = ek for k 6= i, j.

Now we choose a Lickorish generating set for the mapping class group of K that
is suited to our choice of handle shifts. To avoid a notational mess, let A denote
the set of non-separating simple closed curves in K represented in Figure 2. It is
well-known that the right and left Dehn twists about the curves in A generate the
(pure) mapping class group of K.

Define

F = {hi, h−1
i : i ∈ {1, . . . , n−1}}∪{Ta, T−1

a : a ∈ A}∪{σij : i, j ∈ {1, . . . n}&i 6= j},
where Ta is the (left) Dehn twist about the curve a. We leave it as an exercise
for the reader to verify that the subgroup generated by F contains all compactly
supported mapping classes, i.e. the mapping classes with a representative that is
the identity outside of a compact set.

We can view C(K) as a subset of C(S) and we define

U = UK = {f ∈ MCG(S) : f(a) = a for all a ∈ C(K) ⊂ C(S)}.
We can show that S = U ∪ F generates MCG(S): Let f ∈ MCG(S) and let K ′

be a connected, compact subsurface of S containing K ∪ f(K). Let c1, . . . , cn be
a labeling of the components of ∂K such that supp(hi) ∩ cj 6= ∅ if and only if
j ∈ {i, n}. By the classification of compact surfaces, there exists a mapping class
f1 supported in K ′ such that for every i ∈ {1, . . . n} there exists ji ∈ {1, . . . , n} and
ki ∈ Z such that f1 ◦ f(ci) = hki(cji) for some ki ∈ Z.

If

f2 =

(
n−1∏
i=1

h−ki

)
f1,
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then f2 ∈ 〈F 〉 and f2◦f(ci) = cji for every i ∈ {1, . . . , n}. Let σ be the permutation
of {1, . . . , n} defined by σ(i) = ji. We can choose a mapping class fσ written as a
product of the σij realizing the permutation.

Now, as fσ ◦ f2 ◦ f fixes every component of ∂K, there exists a mapping class f3

supported in K such that f3 ◦ fσ ◦ f2 ◦ f is in U ; hence, f ∈ 〈U ∪ F 〉.

By Lemma 14, U is coarsely bounded and hence S = U ∪F is coarsely bounded as
F is finite. We can conclude that MCG(S) is CB generated. �

Corollary 15. Let S is an infinite-genus surface with a finite number of ends,
none of which are planar. If S is the CB generating set constructed in Theorem 13,
then S is analytic and hence every left-invariant compatible metric on MCG(S) is
quasi-isometric to the word metric associated to S.

Proof. Let U and F be as in the proof of Theorem 13. Then, S = U ∪ F is closed
as U was closed and F was finite. Every closed subset of a Polish space is Polish
and hence S is Polish and hence analytic. The remainder of the corollary follows
from Theorem 12. �

Remark 16. It is not too difficult to see that Theorem 13 and Lemma 14 can be
readily extended to planar surfaces whose end space is homeomorphic to an ordinal
space of the form ω · n + 1 for n ∈ N. However, in general, it is not clear how to
extend the proofs given above to other surfaces; the proofs appear to fundamentally
rely on having a finite number of ends (or in the planar case, a finite number of
non-isolated ends).

We have now established an infinite family of big mapping class groups with a
well-defined quasi-isometry class. For each n ∈ N, let Ln denote the infinite-genus
surface with n ends, none of which are planar. We can now ask the following:

Is MCG(Ln) quasi-isometric to MCG(Lm) if and only if n 6= m?

(This question was asked by Kasra Rafi at the AIM workshop.)

As a first case, we have:

Proposition 17. If n ∈ N such that n ≥ 2, then MCG(L1) and MCG(Ln) are not
quasi-isometric.

Proof. As noted earlier, MCG(L1) is coarsely bounded [14]. In contrast, there is
a continuous homomorphism from a finite-index subgroup of MCG(Ln) onto Z [1,
Corollary 2], which implies that MCG(Ln) is not coarsely bounded. (Note: it is
also shown that MCG(Ln) is not coarsely bounded in [14] and, for n ≥ 4, it is also
shown in [7, Corollary 1.3].) �

We finish this note by giving an explicit construction of a graph quasi-isometric
to MCG(L2). Let Γ be the graph whose vertices correspond to homotopy classes
of homologically non-trivial separating curves in L2 and where two vertices are
adjacent if they can be realized by disjoint curves co-bounding a genus-1 subsurface.
This graph was first introduced in [7, Section 9].
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In an earlier version of these notes, the conjecture below was claimed as a theorem.
However, it was pointed out to me by Anschel Schaffer-Cohen that my proof was
incomplete. After communicating with Schaffer-Cohen, I believe he has a proof of
the the conjecture and that it will appear in a forthcoming paper.

Conjecture 18. MCG(L2) and Γ are quasi-isometric.

In [7, Proposition 9.6] it is shown that Γ is not hyperbolic and so, if the conjecture
holds, it would follow that MCG(L2) is not hyperbolic.

Appendix A. Topology of homeomorphism groups

The goal of this section is to give an alternative proof that mapping class groups are
Polish via studying the compact-open topology on the group of homeomorphisms.
Let S be a surface and let Homeo(S) denote the group of self-homeomorphisms of
S. We consider Homeo(S) equipped with the compact-open topology, that is, the
topology generated by sets of the form

V (K,U) = {f ∈ Homeo(S) : f(K) ⊂ U}.
The compact-open topology was introduced simultaneously and independently by
Fox [10] and Arens [3]. (The definitions hold more generally for function spaces with
locally-compact or first-countable domains; also, an equivalent topology for homeo-
morphism groups goes back to at least Birkhoff [6].) The group Homeo(S) equipped
with the compact-open topology is a topological group [2, Theorem 3]. (It is not
so hard to see this for compact Hausdorff spaces; Arens then uses the Alexandroff
compactification to extend it to locally-compact Hausdorff spaces.)

Let us explain why Homeo(S) is Polish. As S is second countable and Hausdorff,
it is an exercise to show that Homeo(S) is also second countable and Hausdorff.
In particular, by the Birkhoff-Kakutani theorem, Homeo(S) is metrizable. Let’s
consider an explicit metric: Fix a complete metric d on S. If S is compact, then
define ρ : Homeo(S)2 → R by

ρ(f, g) = max
x∈S
{d(f(x), g(x))}.

Now suppose that S is not compact. Fix a compact exhaustion {Kn}n∈N of S, that
is, Kn is compact, Kn is contained in the interior of Kn+1, and S =

⋃
n∈NKn. For

f, g ∈ Homeo(S) define

δn(f, g) = min{max{f(x), g(x) : x ∈ Kn}, 2−n}.
Now define ρ(f, g) =

∑
n∈N δn(f, g). (Note that ρ(f, g) ≤ 1 for all f, g ∈ Homeo(S).)

This is the metric constructed in [3, Theorem 7] (with the additional requirement
that d be complete). Arens proves that the metric topology corresponding to ρ is
the compact-open topology.

As the inversion map f 7→ f−1 is a homeomorphism of Homeo(S), we have that
µ(f, g) = ρ(f, g) + ρ(f−1, g−1) defines a metric on Homeo(S) compatible with the
compact-open topology. In fact, µ is a complete metric on Homeo(S). To see this,
observe that given a Cauchy sequence {fn}n∈N in (Homeo(S), µ) we can define the
map f : S → S by f(x) = lim fn(x) – the limit exists as the sequence {fn(x)} is
Cauchy in S with respect to d, which is complete. We leave it as exercise to show
that f ∈ Homeo(S) and hence µ is complete. (As an aside, we note that the metric
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ρ is not complete; it is critical that the sequence {f−1
n } is Cauchy whenever {fn}

is Cauchy.) We have shown:

Proposition 19. For every surface S, the group Homeo(S) is Polish. �

Let Homeo0(S) denote the path component of the identity in Homeo(S). We can
then equip MCG(S) = Homeo(S)/Homeo0(S) with the quotient topology. Using
the Alexander method [9, Proposition 2.8], it is not difficult to see that this quotient
topology agrees with the permutation topology defined earlier.

Proposition 20. Homeo0(S) is a closed normal subgroup of Homeo(S) for every
surface S

Proof. We have already seen that MCG(S) is Hausdorff by Proposition 2. The
proposition follows from the standard fact that a quotient of a topological group is
Hausdorff if and only if the kernel is closed. �

Corollary 21. Mapping class groups are Polish.

Proof. The quotient of a Polish group by a closed normal subgroup is a Polish group
(see [5, Proposition 1.2.3] and [13, Theorem 8.19]). �

Note that this proof does not give the stronger result of Corollary 6.

Above, to see that Homeo0(S) is closed, we relied on the identification of the quo-
tient of the compact-open topology with the permutation topology; if the reader
prefers to avoid this, we prove below that Homeo0(S) is in fact the entire connected
component of the identity and hence is closed.

Before doing so, we state the following theorem of Epstein that establishes the
bijection between homotopy classes and isotopy classes of homeomorphisms.

Theorem 22 ([8, Theorem 6.4]). Let S be a surface not homeomorphic to either
the plane or the annulus. If f ∈ Homeo(S) is homotopic to the identity, then it is
isotopic to the identity.

Note: if S is the plane or the annulus, then every orientation-preserving homeo-
morphism homotopic to the identity is isotopic to the identity. We should also note
that for compact surfaces, Theorem 22 goes back to Baer. Combining Theorem 22
with [10, Theorem 1], we immediately obtain:

Proposition 23. Let S be a surface not homeomorphic to either the plane or the
annulus. A homeomorphism f ∈ Homeo(S) is isotopic to the identity if and only if
f ∈ Homeo0(S). �

We can now prove that Homeo0(S) is the connected component of the identity in
Homeo(S). The idea of the proof comes from Mladen Bestvina as communicated
to the author by Jing Tao.
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Proposition 24. For every surface S, the connected component of the identity in
Homeo(S) is equal to Homeo0(S).

Proof. For each simple closed curve γ on S, let Uγ be a regular neighborhood of γ.
Note that if f ∈ V (γ, Uγ), then f(γ) is isotopic to γ.

Suppose S is of finite type. By the Alexander method [9, Proposition 2.8], there
exists a finite collection γ1, . . . , γn of simple closed curves on S such that

Homeo0(S) =

n⋂
i=1

V (γi, Uγi).

In particular, Homeo0(S) is open. As Homeo(S) is a disjoint union of translates of
Homeo0(S), we can conclude that Homeo0(S) is also closed and hence equal to the
connected component of the identity.

We can now assume that S is of infinite type. Fix a metric d on S and a compact
exhaustion {Kn}n∈N. Using d and the exhaustion {Kn}, construct the metric µ on
Homeo(S) as above as in the proof of Proposition 19.

Let C denote the connected component of the identity in Homeo(S) and let Bδ
denote the intersection of the δ-ball (with respect to µ) with C. Recall that in
a connected topological group, every neighborhood of the identity generates the
group. Therefore, Bδ generates C.

Fix a simple closed curve γ on S. For every ε > 0, there exists δ = δ(ε) > 0 such
that for every x ∈ γ, d(x, g(x)) < ε whenever g ∈ Bδ. In particular, there exists εγ
such that whenever g ∈ Bδγ , we have g(γ) ⊂ Uγ and hence g(γ) is isotopic to γ,
where δγ = δ(εγ).

Now let f ∈ C, then we can write f = g1 · · · gk with gj ∈ Bδγ and hence f(γ)
is isotopic to γ. In particular, f fixes the isotopy class of every simple closed
curve in S; hence, by [11, Corollarly 1.2], f is isotopic to the identity and thus
f ∈ Homeo0(S) by Proposition 23. �

The proof of Proposition 24 is very special to two dimensions, which leads to the
question for arbitrary dimensions:

If M is a second-countable manifold, is the connected component of
the identity in Homeo(M) path connected?

It is possible that this is well known, but the author is unaware of a reference.
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