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Abstract. These are notes on the open problem session run by Priyam
Patel and Nicholas Vlamis for the infinite-type surfaces group at the
2021 Nearly Carbon Neutral Geometric Topology conference organized
by Elizabeth Field, Hannah Hoganson, and Marissa Loving. The notes
have been typed by Yassin Chandran.

1. Introduction

The goal of the problem session was to introduce the audience to themes in
the current research of mapping class groups of infinite-type surfaces. To
that end, this is by no means meant to be an exhaustive list, and in fact,
many of the questions are purposefully vague. During the month between
Patel and Vlamis’s first discussion and the presentation, several of their
initial questions were answered. The body of literature in the field is growing
quickly, and so the reader is encouraged to investigate recent progress before
embarking on any specific question.

For a general introduction to infinite type mapping class groups see [8]. This
note will be divided into the following three main categories:

(1) Algebraic

(2) Teichmüller Theory and Actions on Complexes

(3) Geometric Group Theory and Topology

All surfaces considered are connected, orientable, and second countable.

2. Algebraic Questions

2.1. Generating mapping class groups of infinite-type surfaces. Pa-
tel and Vlamis in [34] showed that pure mapping class groups of infinite-
type surfaces are topologically generated by Dehn twists and handle shifts.
However, if one is studying homomorphisms, then, without a continuity as-
sumption, topological generators do not provide enough information about
the group.

Question 2.1. Give a “nice” set of elements that algebraically generate
MCG(S) (or PMCG(S)).

1



2 Y. CHANDRAN, P. PATEL, AND N. G. VLAMIS

Remark. Note that for an infinite-type surface any such collection is nec-
essarily uncountable since MCG(S) is itself uncountable.

Malestein and Tao [27] give algebraic generating sets consisting of invo-
lutions for a surfaces with zero or infinite genus and whose end space is
self-similar and contains a Cantor set of maximal end. These surfaces are
called uniformly self-similar.

Calegari and Chen in [15] showed that if S is a finite-type surface minus
a Cantor set and with at least one isolated planar end, then MCG(S) is
generated by torsion elements. This is a corollary of their investigation of
normal subgroups.

Mann and Rafi in [29] have some results concerning coarsely bounded (CB)
generating sets.

Given the importance of Dehn twists as generators in the finite-type setting,
it is natural to ask:

Question 2.2. What group is generated by the set of (infinite) multi-twists?

2.2. Algebraic invariants and subgroups. If a surface has finite genus,
then the mapping class group surjects onto the mapping class group of the
closed surface of the same genus. One can then pullback any subgroup of
the mapping class group of the closed surface to that of the original surface.
In this way, using the theory of mapping class groups of finite-type surfaces,
it is easy to construct large subgroups of mapping class groups of infinite-
type surfaces with positive finite genus. However, outside of this setting, it
has been difficult to find large (e.g. finite- or countable-index) subgroups of
mapping class groups of infinite-type surfaces.

With this discussion in mind, for the rest of this subsection, we restrict
ourselves to infinite-genus surfaces with no planar ends. (There are likely
versions for the genus zero case and for allowing some planar ends.)

Question 2.3. Given a finite- or countable-index subgroup of a mapping
class group is it necessarily a pullback of a finite- or countable-index subgroup
of either the homeomorphism group of the end space or the abelianization of
the mapping class group?

Unlike the finite-type case, the abelianization of (pure) mapping class groups
of infinite-type surfaces can be large, both in some natural ways [7] and some
surprising ways [19]. In the latter case, it was shown the the mapping class
group of the Loch Ness monster surface has nontrivial abelianization, and
in the abelianization there are many copies of Q and hence the mapping
class group of the Loch Ness monster surface has many proper subgroups of
countably infinite index.
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In contrast, it was recently shown in [24] that the abelianization of infinite-
type surfaces can be finitely generated and even discrete when equipped
with the quotient topology.

Question 2.4. Does the mapping class group of the Loch Ness monster
surface have any proper finite-index subgroups? Does the abelianization have
any torsion?

More generally, one may ask about simply constructing and classifying sub-
groups of mapping class groups. In a similar vein, one can find and classify
the actions of mapping class groups. For instance, a classical example is
the action of the mapping class group of a surface on the first homology
group of the surface and its kernel, the Torelli group (see for instance [22]
and [6]).

Problem 2.5. Find methods of constructing subgroups/actions of mapping
class groups.

Towards this goal is the recent work of Abbott, Hoganson, Loving, Patel,
and Skipper [2]. A group G is called indicable if there exists a surjective
homomorphism f : G → Z. For any indicable group G that arises as a sub-
group of the mapping class group of a surface with one boundary component,
the authors use shift maps to construct uncountably many embeddings of
G into a big mapping class group MCG(S); moreover, the images of G are
not contained in the closure of set of compactly supported mapping classes
(and hence are “intrinsically infinite-type”).

Next, we turn to finding small (i.e. countable) subgroups of mapping class
groups.

Question 2.6. Does the mapping class group of an infinite-genus surface
with no planar ends contain every countable group?

The work of Aougab, Patel, and Vlamis [4] show that the above question is
true for the infinite-genus surfaces with no planar ends and self-similar end
space, e.g. the Loch Ness monster surface; it is also shown that every map-
ping class group of an infinite-genus surface with no planar ends contains
every finite group as a subgroup. To do this, they realize every countable
group as the isometry group of a hyperbolic structure, and moreover, show
that the above surfaces are the only ones in which this is possible. There-
fore, to answer Question 2.6, it is necessary to construct infinitely countable
subgroups in a new way.

Remark. There are restrictions on the countable groups that can appear
as subgroups once you relax the topological restrictions—see [4, Section 9]
for more details.
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Next, we turn to quotients. Every finite group can be realized as a quo-
tient of a finite-index subgroup of a mapping class group of some closed
surface.

Question 2.7. Does there exist a finite (or countable) group that is not the
quotient of a (finite-index subgroup of a) mapping class group of an infinite-
genus surface?

Question 2.8. Does there exist a single mapping class group for which every
countable (or finite) group is a quotient? Equivalently (in the countable
case), is there a mapping class group that surjects onto the free group on a
countable set?

The following is a question of Bestvina from the AIM work shop on infinite-
type surfaces [1].

Question 2.9. Let S be the plane minus a cantor set. Is it true that every
subgroup of MCG(S) either has an infinite-dimensional space of quasimor-
phisms or is amenable?

3. Teichmüller Theory and Actions on Complexes

The problem motivating much of this section is to generalize the Nielsen–
Thurston classification of surface homeomorphisms, that is:

Problem 3.1. Classify homeomorphisms of infinite-type surfaces.

As a sub-problem, it is natural to ask:

Question 3.2. What is the correct analogue (or analogues) of pseudo-
Anosov homeomorphisms in the infinite-type setting?

3.1. Teichmüller Space. The Teichmüller space, Teich(R), of a Riemann
surfaceR is the set of equivalence classes of pairs (X, f) where f : R → X is a
quasiconformal homeomorphisms and where (X, f) ∼ (Y, g) if g◦f−1 : X →
Y is homotopic to a conformal map. Regardless of whether R is of finite or
infinite type, the Teichmüller metric is defined the same way, and defines
a topology on Teich(R) (in the case R is of infinite type, there are several
“natural” topologies on Teich(R) that can be defined and may not always
agree). The Teichmüller modular group, denoted Mod(R), is the group of
homotopy classes of quasiconformal homeomorphisms R → R. From the
definitions, one sees that Mod(R) acts on Teich(R). We readily see that
Mod(R) < MCG(R), but if R is an infinite-type surface, then it is the case
that MCG(R) ̸= Mod(R), and moreover, MCG(R) does not act on Teich(R)
(this currently is not written in the literature anywhere). Note that in the
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infinite-type setting, the group Mod(R) has a much longer history of being
studied.

In the finite-type setting, the action of mapping class groups on Teichmüller
space is crucial ingredient in the celebrated Nielsen–Thurston classification
of mapping classes. This motivates the following few questions, the first of
which is quite vague, but nonetheless is worth thinking about.

Question 3.3. How does Mod(R) act on Teich(R)?

In Bers’s proof of the Nielsen–Thurston classification, the dynamics of a
single mapping class on Teichmüller space fall into three categories, which
yields the classification theory; however, the picture is not as clean in the
infinite-type setting—we refer the reader to [32]. Thurston’s original proof
relied on the boundary of Teichmüller space and the compactness of the
associated compactification. In the infinite-type setting, it is still possible
to discuss analogous boundaries (see Bonahon–Šarić [14]), but they will not
yield a compactification.

Question 3.4. How does Mod(R) act on the boundary of Teich(R)?

This problem session is interested in the full mapping class group, so to get
back on this track, we propose the following:

Question 3.5. How does Mod(R) sit in MCG(R)?

For instance, one can modify a construction of Matsuzaki [31] (and using [9]
to guarantee completeness) to see that it is possible to have Mod(R) be
equal to the group of compactly supported mapping class, and in particular,
for Mod(R) to be a normal subgroup of MCG(R).

Problem 3.6. Characterize when Mod(R) is normal in MCG(R).

Note that Mod(R) can be dense in MCG(R), and hence, even though
MCG(R) does not act on Teich(R), it may be possible to import infor-
mation from the action of Mod(R) of Teich(R). (For example, if R is home-
omorphic to the Loch Ness monster surface, then the group of compactly
supported mapping classes is dense in MCG(R), and hence Mod(R) is dense
in MCG(R) since every compactly supported mapping class is quasiconfor-
mal.)

3.2. Action on complexes. In the finite-type setting, the action of map-
ping class groups on the curve graph as has been an incredibly fruitful tool.
This graph is infinite diameter and Gromov hyperbolic [30].
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In the infinite-type setting, the curve graph is diameter 2 and thus quasi-
isometrically trivial. However, there have been a number of papers con-
structing infinite-diameter hyperbolic graphs upon which infinite-type map-
ping class groups act, see [5, 10, 12, 13, 20, 21, 25, 38] (n.b. [11] is an English
translation of [10]).

Problem 3.7. Study actions of MCG(S) on infinite-diameter hyperbolic
graphs.

In the finite-type setting, pseudo-Anosov mapping classes act loxodromically
on the curve graph. In reference to Question 3.2, we want to understand the
mapping classes that act loxodromically on the various hyperbolic graphs
referenced above.

Question 3.8. Construct and classify loxodromics for the various actions
referenced above.

Bavard [10] was the first to construct loxodromic actions, and recently
Morales–Valdez [33] and Abbott–Patel–Miller [3] have given additional new
constructions.

In the finite-type setting, no mapping classes act parabolically on the curve
graph:

Question 3.9. Do there exist mapping classes that act parabolically on any
of the referenced graphs? If so, classify them.

Before the recent interest in mapping class groups of infinite-type surfaces,
homeomorphisms of infinite-type surfaces were studied in the context of
foliations on 3-manifolds. In this body of work, the notion of end periodic
homeomorphism plays a crucial role and there is a Nielsen–Thurston classifi-
cation for such homeomorphisms—we recommend the reader see the recent
work [23, Section 2.2] for a short introduction, including definitions and
references, for end periodic homeomorphisms (we recommend this recent
paper because it was written with the work on big mapping class groups in
mind). In fact, end periodic homeomorphisms have properties in common
with pseudo-Anosov homeomorphisms, and it is natural to ask:

Question 3.10. When do end periodic homeomorphisms act loxodromically
on the above referenced graphs?

We also want to bring attention to the work of Šarić on the theory of train
tracks and laminations for infinite-type surfaces [37], which is a useful tool
when thinking about the questions above.
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4. Geometric Group Theory and Topology

Geometry. Geometric group theory is most commonly applied to finitely
generated groups, but much of theory can be adapted to the setting of lo-
cally compact, compactly generated groups, see [18]. Rosendal [36] observed
that the compactness conditions can be relaxed by replacing compactness
with a notion of boundedness and has extended the tools of geometric group
theory to a larger class of groups, namely CB generated Polish groups. Map-
ping class groups of infinite-type surfaces fail are neither locally compact nor
compactly generated; however, Mann and Rafi [29] characterize which map-
ping class groups are CB generated—and hence have a canonical (up to
quasi-isometry) word metric—and, in particular, show that CB generated
mapping class groups exist.

In fact, there are mapping class groups of infinite-type surfaces that are
Gromov hyperbolic [38], a phenomenon that does not exist in the finite-type
setting. The panelists are not familiar with the theory of locally compact,
compactly generated groups in a meaningful way, but there is work focused
on hyperbolic locally compact groups. We therefore ask a very generic ques-
tion:

Question 4.1. Does hyperbolicity imply any algebraic properties of (non-
locally compact) CB generated Polish groups?

And if the above question can be answered in the affirmative, it is natural
to investigate further:

Problem 4.2. Develop the theory of hyperbolic Polish groups.

Automatic continuity. Mapping class groups are Polish groups. For a
comprehensive reference on Polish groups see [26]. A Polish group G has
the automatic continuity property (ACP) if every group homomorphism
G → H is continuous whenever H is a separable topological group. For
example, the homeomorphism group of the Cantor set, the homeomorphism
groups of closed manifolds, and the automorphism group of the countably
infinite-rank free group all have the ACP (see [35] for a survey and references
regarding ACP).

Mann [28] has given examples of mapping class groups with and without
the automatic continuity property. Domat and Dickmann [19] have shown
that the mapping class group of the Loch Ness monster surface fails to have
the automatic continuity property by constructing a discontinuous homo-
morphism to the rationals (the ideas behind this case have been generalized
in [27] to provide additional examples of mapping class groups without the
ACP).

Problem 4.3. Characterize the mapping class groups with the ACP.
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The known examples of discontinuous homomorphisms from mapping classes
each have either a finite group or the rationals as their codomain. This does
not seem to be a coincidence given Conner’s conjecture [16]: a group H is
cm-slender if every homomorphism with domain a completely metrizable
group and with H as a codomain has an open kernel.

Conjecture 4.4 (Conner’s Conjecture). Every countable torsion-free group
that does not contain an isomorphic copy of Q is cm-slender.

Conner’s conjecture is known to hold for a large class of groups, including
torsion-free word hyperbolic groups, free abelian groups, braid groups, and
Thompson’s groups (see [17]).
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