~

MATH 231: Fall 2025		Instructor: Nicholas Vlamis
Wednesday 10/15/2025	Exam 1	110 minutes
Name:	Solutions	

Instructions.

- 1. Read each problem carefully. Make sure you understand what the problem is asking.
- 2. Unless previously granted permission, you may only use a TI-82, TI-83, TI-84 or scientific calculator.
- 3. You may use a note sheet, which consists of a single sheet of 8.5" x 11" inch paper. Your note sheet is not allowed to contain solutions to problems or proofs of theorems. It will be collected with your exam.
- 4. No devices other than a writing utensil and calculator may be used.

Question	Points	Score
1	6	
2	8	
3	3	
4	2	
5	3	
6	4	
7	2	
8	7	
9	3	
10	4	
11	8	
Total:	50	

Questions

1. 6 points Consider the following system of linear equations:

$$x_1 - x_2 - x_3 = -7$$

$$4x_1 + 4x_2 + 2x_3 = 0$$

$$2x_2 + 2x_3 = 8$$

(a) Write down the augmented matrix of the linear system.

(b) Write the linear system as a matrix equation.

$$\begin{bmatrix} 1 & -1 & -1 \\ 4 & 4 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -7 \\ 0 \\ 8 \end{bmatrix}$$

(c) For the next part, use the fact that the reduced row echelon form of the augmented matrix of the linear system is:

$$\begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

How many solutions does the linear system have? If it has solutions, find them all.

There is one solution:
$$X_1 = -3$$
 $X_2 = 2$
 $X_3 = 2$

S A KARANS ON TOND TO BE SENTEN

6. 4 points Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ be a linear transformation satisfying

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\\0\\1\end{bmatrix} \text{ and } T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}3\\-1\\1\\0\end{bmatrix}$$

(a) Find the standard matrix for T.

$$T = T_A$$
 where $A = [T(e_i) \ T(e_i)]$ and $e_i = [0]$, $e_i = [0]$.

So $A = [0] = [0]$ is the standard matrix for T .

(b) Compute $T\left(\begin{bmatrix} -1\\2\end{bmatrix}\right)$.

$$T\left(\begin{bmatrix} -1 \\ 2 \end{bmatrix}\right) = \begin{bmatrix} 1 & 3 \\ 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 2 \\ -1 \end{bmatrix}$$

7. 2 points Let A be an 3×3 matrix satisfying

$$A \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} = 0 \text{ and } A \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 0$$

Give a 3×2 matrix B with distinct non-zero column vectors such that AB = 0.

Let
$$b_1 = \begin{bmatrix} c \\ 3 \end{bmatrix}$$
 and $b_2 = \begin{bmatrix} c \\ 3 \end{bmatrix}$, so $Ab_1 = 0$ and $Ab_2 = 0$.
Set $B = \begin{bmatrix} b_1 & b_2 \end{bmatrix} = \begin{bmatrix} c & c \\ 3 & c \end{bmatrix}$.

$$\widehat{I}_{Am} AB = [Ab, Ab_{2}] = [\widehat{o} \widehat{o}] = [\begin{matrix} o & o \\ o & o \end{matrix}].$$

3. 3 points Suppose each of the following matrices is the augmented matrix for a system of linear equations. For each, write down how many solutions its corresponding system has. (No computations should be necessary and no work is required.)

(a)
$$\begin{bmatrix} 1 & 0 & 4 & 1 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 4 & 1 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 0 & 4 & 1 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

00 - Many

٥

_~

4. 2 points Let
$$A = \begin{bmatrix} -2 & 1 & 0 \\ 3 & -5 & 3 \\ 0 & -1 & 7 \end{bmatrix}$$
 and let $B = \begin{bmatrix} -2 & 1 & 0 \\ 3 & -7 & 17 \\ 0 & -1 & 7 \end{bmatrix}$.

Find a single elementary row operation that when applied to A yields B. (Make sure you give a clear description of what the operation is.)

5. 3 points Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation such that

$$T\left(\begin{bmatrix}1\\-3\\7\end{bmatrix}\right) = T\left(\begin{bmatrix}5\\2\\0\end{bmatrix}\right)$$

Find a nontrivial solution to $T(\mathbf{x}) = \mathbf{0}$.

$$\begin{bmatrix} 1 \\ -3 \\ 7 \end{bmatrix} - \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 14 \\ -5 \\ 7 \end{bmatrix} - \begin{bmatrix} 5 \\ 2 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} 14 \\ -3 \\ 7 \end{bmatrix} - \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix} - \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix} - \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix} = 0$$

$$\Rightarrow X = \begin{bmatrix} -4 \\ -5 \\ 7 \end{bmatrix} \text{ is a Solution to } T(x) = 0$$

2. 8 points Let A be a 4×4 matrix such that

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & -7 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The following questions are about the linear system in the variables x_1 , x_2 , x_3 , and x_4 that is associated to the matrix equation $A\mathbf{x} = \mathbf{0}$, where we write

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

(a) Determine which of the variables of the linear system are basic (or leading) and which are free. (Note: A is not an augmented matrix.)

leading variables: X, , X2

Free Variables: X2, X4

(b) Find the (parameterized) general solution to the linear system.

x>= 2

for s, tell

X3 = +

Xy: t

(c) Write the solution to $A\mathbf{x} = 0$ as the span of a collection of vectors in \mathbb{R}^4 .

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_3 \end{bmatrix} = \begin{bmatrix} 72 - 2t \\ 5 \\ t \\ \vdots \\ t \end{bmatrix} = 5 \begin{bmatrix} 7 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Solution set is span
$$\left\{ \begin{bmatrix} 7 \\ 0 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right\}$$

8. 7 points Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 be vectors in \mathbb{R}^3 . Let $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4]$, and suppose

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(a) Are the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 linearly independent? Explain.

Ax=0 has a free variable, and hence a nontrivial Solution. But a nontrivial solution to Ax=0

is a nontrivial solution to X, V, + X2V2 + X3V3 + X4V4=0,

(b) Is span{ v_1, v_2, v_3, v_4 } all of \mathbb{R}^3 ? Explain.

Ves. A has a pivot position in

Every row, so $A_X = b$ has a solution dependent

For every $b \in \mathbb{R}^3$. In other words, every $b \in \mathbb{R}^3$ is in the span of

(c) What are the domain and codomain of the matrix transformation T_A ?

{ v_1, v_2, v_3, v_4 } all of \mathbb{R}^3 ? Explain.

implying $\{v_1, v_2, v_3, v_4\}$ directly dependent $\{v_1, v_2, v_3, v_4\}$ all of \mathbb{R}^3 ? Explain.

implying $\{v_1, v_2, v_3, v_4\}$ directly dependent $\{v_1, v_2, v_3, v_4\}$ all of \mathbb{R}^3 ? Explain.

implying $\{v_1, v_2, v_3, v_4\}$ all of \mathbb{R}^3 ? Explain.

implying $\{v_1, v_2, v_3, v_4\}$ all of \mathbb{R}^3 ? Explain.

implying $\{v_1, v_2, v_3, v_4\}$ all of \mathbb{R}^3 ? Explain.

implying $\{v_1, v_2, v_3, v_4\}$ all of \mathbb{R}^3 ? Explain.

Ais 3x4 => Dorain of Ta is R4, and the Codemain is R3.

(d) Is the matrix transformation T_A onto? Explain.

Yes. Given any be R3, Ax-b has a solution, say X=V. The Talvi = Av = b.

9. 3 points Let $\mathbf{v} \in \mathbb{R}^n$. Show that if $\mathbf{v} \cdot \mathbf{v} = 0$, then $\mathbf{v} = 0$.

Let's argue the contrapositive: if \$7 \$0, then \$0.0 70.

Write # $\vec{V} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$. As $\vec{V} \neq 0$, \vec{J} is so that $\alpha_i \neq 0$.

Now, V.V = a + a + + a = a > 0.

10. 4 points Suppose A and B are matrices such that the last column of AB is all zeroes. Give an argument showing that if B has no column of all zeroes itself, then the columns of A are linearly dependent.

- 11. 8 points Decide whether each of the following statements is TRUE or FALSE (no explanation required).
 - (a) A matrix equation of the form Ax = 0 always has at least one solution.

True

(b) There exists a linear system with exactly three solutions.

False

- (c) Every linear system with the same number of unknowns and equations has exactly one solution.
- (d) If A and B are square matrices of the same size, then AB = BA.

False

(e) If $T: \mathbb{R}^p \to \mathbb{R}^q$ is a linear transformation, then the standard matrix for T has size $q \times p$.

(f) Any set containing exactly one vector is linearly independent.

False

(g) The matrix equation $A\mathbf{x} = \mathbf{b}$ is consistent if every column of A is a pivot column.

False

(h) If the rightmost column of an augmented matrix is a pivot column, then the associated linear system is inconsistent.

True