MATH 231: Fall 2025	Instructor: Nicholas Vlami

Wednesday 11/19/2025

Exam 2

110 minutes

lame: Joluti

Instructions.

- 1. **Read each problem carefully.** Make sure you understand what the problem is asking.
- 2. Unless previously granted permission, you may only use a TI-82, TI-83, TI-84 or scientific calculator.
- 3. You may use a note sheet, which consists of a single sheet of 8.5" x 11" inch paper. Your note sheet is **not** allowed to contain solutions to problems or proofs of theorems. It will be collected with your exam.
- 4. No devices other than a writing utensil and calculator may be used.

Question	Points	Score
1	5	
2	6	
3	5	
4	6	
5	10	
6	10	
7	4	
8	4	
Total:	50	

Theorem 1 (Invertible Matrix Theorem). Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- a. A is an invertible matrix.
- b. A is row equivalent to I_n .
- c. A has n pivot positions.
- d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^n$.
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j. There is an $n \times n$ matrix C such that $CA = I_n$.
- k. There is an $n \times n$ matrix D such that AD = I.
- l. A^T is an invertible matrix.
- m. The columns of A form a basis of \mathbb{R}^n .
- n. $col(A) = \mathbb{R}^n$.
- o. rank(A) = n.
- p. $\operatorname{nullity}(A) = 0$.
- q. $null(A) = \{0\}.$
- r. $det(A) \neq 0$.
- s. 0 is not an eigenvalue of A.

Questions

- 1. 5 points Let A be a 3×3 matrix with det(A) = -3.
 - (a) Find det(2A).

(b) Find $det(A^{-1})$.

$$\det(A'') = \frac{1}{\det(A)} = \frac{1}{3}$$

(c) Find $det(A^2)$. $det(A^2) = det(AA) = det(A1) det(A1) = (-3)^2 = 9$

(d) Suppose B is a matrix obtained from A by multiplying the first row of A by 2, the second row by -3, and switching the last two rows of A. Find det(B).

(e) Find det(AB).

2. 6 points Consider the matrix $A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 4 & 1 & -2 \\ 5 & 10 & 2 & -5 \end{bmatrix}$ whose reduced row echelon form is as follows

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Is the vector $\begin{bmatrix} 0\\1\\0\\2 \end{bmatrix} \in \mathbb{R}^4$ in the null space of A? How do you know?

By definition, [is in the null space of A if A[is = 0.

Let's Cleck:

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 4 & 1 & -2 \\ 5 & 10 & 2 & -5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 - 2 \\ 4 - 4 \\ 10 - 10 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \end{bmatrix}$$
 is in the A.

(b) Find a basis for col(A).

The pivot columns of A give a basis for
$$Col(A)$$
, so $\left\{ \begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 0\\2 \end{bmatrix} \right\}$ is a basis for $Col(A)$.

(c) Find the rank and nullity of A.

The rank nullity theorem in this case says
rank(A) + nullity(A) = 4

By part (6), rank(A) = 2 and so
nullity(A) = 4-2=2

3. $\boxed{5 \text{ points}}$ Let A be an invertible matrix whose inverse is given by

$$A^{-1} = \begin{bmatrix} -1 & 2 & 0 & 1\\ 0 & 0 & 1 & -1\\ 3 & 1 & -5 & 0\\ 1 & -1 & -1 & 1 \end{bmatrix}.$$

(b) Using only the definition of an invertible matrix, provide an argument for the fact that $A\mathbf{x} = \mathbf{b}$ has exactly one solution, that is, show that if \mathbf{u} and \mathbf{v} are both solutions to $A\mathbf{x} = \mathbf{b}$, then $\mathbf{v} = \mathbf{u}$. (To be clear, you cannot use the Invertible Matrix Theorem in your argument.)

4. $\boxed{6 \text{ points}}$ Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ be vectors in \mathbb{R}^2 , and let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$.

(a) Provide an argument showing that \mathcal{B} is a basis for \mathbb{R}^2 .

Consider the matrix $B = [v_1 \ v_2] = [2]$

The invertible matrix theorem tells us that if B is invertible,

then B is linearly independent and B spans IR2; in other words that B is a basis for IR2.

To click the invertibility of B, we can just check that its determinant is nonzero

det B=-5 +0 => B is a basis for R2.

(b) Find the \mathcal{B} -coordinates of $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, that is, compute $[\mathbf{v}]_{\mathcal{B}}$.

By definition, $[V]_B = \begin{bmatrix} c_i \\ c_a \end{bmatrix}$, where $V = C_i V_i + C_a V_a$.
This says that $B[c_i] = V$

 $\Rightarrow \begin{bmatrix} V \end{bmatrix}_{B} = \begin{bmatrix} C_{1} \\ C_{2} \end{bmatrix} = B^{-1} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = -\frac{1}{5} \begin{bmatrix} -3 \\ -2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = -\frac{1}{5} \begin{bmatrix} 7 \\ -1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 7 \\ 1 \end{bmatrix}$

(c) Suppose A is a 2×2 matrix such that $A\mathbf{v}_1 = 3\mathbf{v}_1$ and $A\mathbf{v}_2 = -2\mathbf{v}_2$. Compute $[A\mathbf{v}]_{\mathcal{B}}$. (You will have to use your answer from (b).)

 $Av = A \left(\frac{1}{5}v_1 + \frac{1}{5}v_2 \right) = \frac{3}{5} Av_1 + \frac{1}{5}Av_2$ $= \frac{3}{5} (3v_1) + \frac{1}{5} (-2v_2)$ $= \left(\frac{21}{5} v_1 + \frac{2}{5} v_2 \right)$ $= \left(\frac{21}{5} v_1 + \frac{2}{5} v_2 \right)$ $= \left(\frac{21}{5} v_1 + \frac{2}{5} v_2 \right)$

5. 10 points Let
$$A = \begin{bmatrix} 1 & 6 & -6 \\ 0 & -1 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$

(a) Is $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ an eigenvector of A? Explain how you know.

By Learnition, V is an eigenvector of A if Av= lu for some constant let's check:

Av= [0 - 6][1] = [-5]

Setting Av= lu, we $A = \begin{bmatrix} 1 & 6 & -6 \\ 0 & -1 & 2 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} -5 \\ 2 \\ 0 \end{bmatrix}.$

get the following equations from the first the occordinates!

(b) Find the characteristic polynomial of A. Show your work. (You should get the Which polynomial $(\lambda - 1)^2(\lambda + 2)$.)

The characteristic polynomial is! $det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -6 & 6 \\ 0 & \lambda + 1 & -2 \end{vmatrix}$

inconsistent

>> v is not

an e. vector $= (\lambda - 1) [(\lambda + 1)\lambda - \lambda]$ $=(\lambda-1)[\lambda^2+\lambda-2]=(\lambda-1)(\lambda-1)(\lambda+2)=(\lambda-1)^2(\lambda+2)$

(c) What are the eigenvalues of A?

The eigenvalues of A correspond to the roots of its characteristic polynomial => 2=1 and 7=-2

> are the eigenvaluer (Problem continued on next page.) or A

(d) Find a basis for each eigenspace. (Feel free to work on the back of the sheet.)

Figure 1:

$$E_1$$
:

 E_1 :

 E

(e) What is the dimension of each of the eigenspaces of A?

- 6. 10 points Answer the following questions. No explanation is necessary.
 - (a) If A is 3×2 matrix and the matrix product AB is a 3×4 matrix, what is the size of B?

- (b) Write down the 3 × 3 elementary matrix corresponding to the row operation of switching the first and third row.
- (c) Suppose A is a 5×7 matrix. What is the value of n for which the column space of A a subspace of \mathbb{R}^n ?

(d) Suppose A is a 5×7 matrix. What is the value of n for which the null space of A a subspace of \mathbb{R}^n ?

(e) Suppose A is a square matrix that is **not** invertible. What is $\det(A)$?

0

(f) If A is a 9×7 matrix and the rank of A is 3, then what is the nullity of A?

(g) What is the rank of an invertible 6×6 matrix?

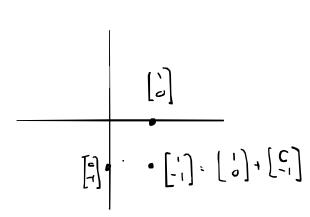
(h) List all the possible values for the nullity of a 3×5 matrix.

(i) Let A be a 8×6 matrix. If A has four pivot columns, what is the size of a basis for the solution set to $A\mathbf{x} = 0$?

(j) Given nonzero vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ such that \mathbf{u} and \mathbf{v} are linearly independent, what is the dimension the subspace span $\{\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}\}$?

7. $\boxed{4 \text{ points}}$ Let $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 : xy \geq 0 \right\}$, so that W is the union of the first and third quadrants in the xy-plane. Determine whether W is a subspace of \mathbb{R}^2 or not. Justify your answer.

No, W is not a subspace.



[i] and [c] are in W.
but [i]+[c]=[i] is not,
so W cannot be a subspace.

8. $\boxed{4 \text{ points}}$ Use the properties of the determinant to show that if A and B are square matrices such that AB is invertible, then A and B are both invertible.

We know det(AB) ≠ 0, as AB is invertible.

Now, det(AB) = det(A) det(B)

=> det(A) det(B) # 0

=> det(A) = 0 and det(B) = 6

=> A and B are both muertible