Problem 1. Given below is the reduced row echelon form of an augmented matrix associated to a linear system in the variables x_1, x_2, x_3 , and x_4 .

$$\begin{bmatrix} 1 & 0 & 3 & 0 & 5 \\ 0 & 1 & 2 & 0 & -3 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

(a) List the basic variable(s).

(b) List the free variable(s).

$$\chi_3$$

(c) Write down the general solution to the linear system.

$$\chi_{s}=t$$

(d) How many solutions does the linear system have?

(Turn Page Over)

Problem 2. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 3 \\ 1 \\ 6 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

(a) Write down the linear system corresponding to the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 = \mathbf{b}.$$

$$\chi_1 + 3\chi_2 = 0$$

$$\chi_1 + \chi_2 = 1$$

$$6\chi_2 = 6$$

(b) Write the linear system you gave in part (a) as a matrix equation.

$$\begin{bmatrix} 1 & 3 \\ 1 & 1 \\ 0 & 6 \end{bmatrix} \vec{\chi} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

(c) Is \mathbf{b} a linear combination of \mathbf{v}_1 and \mathbf{v}_2 ? Justify your answer.

b is a linear combination of v, and v_2 only if the linear system from (a) has a solution. But we see that $x_2 = 0$ from the third equation, implying that $x_1 = 0$ from plugging $x_2 = 0$ into the first equation. Now the second equation then says that $v_2 = 0$ the second equation then says that