Instructions. Read the Homework Guide to make sure you understand how to successfully complete the assignment.

***Exercise 1.** (a) Give an example of a function $\mathbb{N} \to \mathbb{N}$ that is injective but not surjective.

- (b) Give an example of a function $\mathbb{N} \to \mathbb{N}$ that is surjective but not injective.
- (c) Give an example of a bijection from $\mathbb{N} \to \mathbb{Z}$.

Exercise 2. Let $f: A \to B$ and $g: B \to C$. Prove the following statements.

- (a) If f and g are both injective, then $g \circ f$ is injective.
- (b) If $g \circ f$ is surjective, then g is surjective.
- (c) If $g \circ f$ is injective and f is onto, then g is injective.

Exercise 3. Let $f: X \to Y$ be a function, let $A_1, A_2 \subset X$, and let $B_1, B_2 \subset Y$.

- (a) Prove that $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.
- (b) Prove that $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$, and then give an example where $f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2)$.
- (c) Prove that $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$, where $f^{-1}(B) = \{x \in X : f(x) \in B\}$.
- (d) Prove that $f^{-1}(B_1 \cap B_2) = f^{-1}(B_2) \cap f^{-1}(B_2)$.

*Exercise 4. Let $S \subset \mathbb{N}$ such that $1 \in S$ and $n + 1 \in S$ whenever $n \in S$. Prove that $S = \mathbb{N}$. (Hint: Use the well-ordering principle.)

**Exercise 5. Define the ordering < on $\mathbb{N} \times \mathbb{N}$ by (a, b) < (c, d) if a < c or a = c and b < d (this is called the *lexicographical ordering*). Prove that $(\mathbb{N} \times \mathbb{N}, <)$ is well ordered, that is, show that given a nonempty subset S of $\mathbb{N} \times \mathbb{N}$ there exists $s \in S$ such that s < s' for all $s' \in S \setminus \{s\}$.

Aside: as a set with no additional structure, $\mathbb{N} \times \mathbb{N}$ is equivalent to \mathbb{N} , as there is a bijection between them (can you find it?); however, as ordered sets, these sets are not equivalent (meaning, there is no order-preserving bijection between them), as bounded sets need not be finite in the lexicographical ordering. Various notions of equivalence are very important in mathematics.

Exercise 6. Let $a, b, c, m, n \in \mathbb{Z}$. Prove that if $a \mid b$ and $a \mid c$, then $a \mid (mb + nc)$.

Exercise 7. Let $a, b \in \mathbb{Z}$. Prove that if $a \mid b$ and $b \mid a$, then either a = b or a = -b.

*Exercise 8. Let $n \in \mathbb{N}$. Prove that the remainder obtained from dividing n^2 by 4 is either 0 or 1.

Exercise 9. Use the Euclidean algorithm to compute the following greatest common divisors:

- (a) gcd(42, 55)
- (b) gcd(14, 30)
- (c) gcd(234, 165)
- (d) gcd(1739, 9923)

*Exercise 10. Let $a, b \in \mathbb{Z} \setminus \{0\}$. Prove that if there exists $s, t \in \mathbb{Z}$ such that as + bt = 1, then gcd(a, b) = 1.

Exercise 11. Let a and b be nonzero integers, and let d = gcd(a, b). Prove that an integer c is a linear combination of a and b if and only if $d \mid c$.

Definition. Two nonzero integers are *relatively prime* if their greatest common divisor is one.

Exercise 12. Let a and b be relatively prime integers. Prove that if $c \in \mathbb{Z}$ such that $a \mid bc$, then $a \mid c$.

Exercise 13. Let $p \in \mathbb{N}$ be prime. Prove that if $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ such that $p \mid a_1 a_2 \cdots a_n$, then there exists $k \in \{1, 2, \ldots, n\}$ such that $p \mid a_k$. (Hint: Use induction, with Euclid's lemma as the base case.)

Definition. Given two nonzero integers a and b, an integer c is a common multiple of a and b if $a \mid c$ and $b \mid c$. The least common multiple of a and b, denoted lcm(a,b), is the smallest positive common multiple of a and b.

*Exercise 14. Let *a* and *b* be nonzero integers.

- (1) Prove that the least common multiple of a and b exists.
- (2) Prove that if $k \in \mathbb{Z}$ is a common multiple of a and b, then lcm(a, b) divides k. (Hint: divide k by lcm(a, b) using the division algorithm.)

****Exercise 15.** Let a and b be nonzero integers.

- (1) Prove that the product of lcm(a, b) and gcd(a, b) is equal to |ab|. (Hint: the product ab is divisible by d = gcd(a, b). Let m = |ab|/d. Now, let k be a common multiple of a and b. Write d as a linear combination in a and b, and use this to express the fraction k/m as an integer.)
- (2) Prove that lcm(a, b) = |ab| if and only if gcd(a, b) = 1.

Exercise 16. Let $a \in \mathbb{Z} \setminus \{1\}$. Use induction to prove that

$$a^{n} - 1 = (a - 1) \sum_{k=0}^{n-1} a^{k}$$

for all $n \in \mathbb{N}$. (Note: you are inducting on n, not a.)

*Exercise 17. Let $p \in \mathbb{N}$ with $p \ge 2$. Prove that if $2^p - 1$ is prime, then p is prime. (Hint: you will find the previous exercise helpful.)