Instructions. Read the Homework Guide to make sure you understand how to successfully complete the assignment.

Exercise 1. Prove that

 $G = \{a + b\sqrt{2} : a, b \in \mathbb{Q} \text{ and } a \text{ and } b \text{ are not both zero}\}$

is a subgroup of \mathbb{R}^{\times} under the group operation of multiplication.

*Exercise 2. Let H and K be subgroup of a group G.

(a) Prove that $H \cap K$ is a subgroup of G.

(b) Prove or disprove: $H \cup K$ is a subgroup of G.

(c) Prove that if G is abelian, then $HK = \{hk : h \in H, k \in K\}$ is a subgroup of G.

Exercise 3. Let G be a group. The *center* of G is the set

$$Z(G) = \{ a \in G : ga = ag \text{ for all } g \in G \}.$$

Prove that Z(G) is a subgroup of G.

Exercise 4. (a) Compute the center of $GL(n, \mathbb{R})$. Hint: Use the following test matrices: $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

(b) Compute the center of $SL(n, \mathbb{R})$.

*Exercise 5. Let H be a subgroup of a group G. Define the relation \sim on G by $a \sim b$ if $b^{-1}a \in H$. Prove that \sim is an equivalence relation on G.

****Exercise 6.** Suppose *H* is a nonempty finite subset of a group *G* and that *H* is closed under multiplication (that is, $ab \in H$ for all $a, b \in H$). Prove that *H* is a subgroup of *G*.

Exercise 7. Let G be a group, and let $a \in G$ have finite order.

- (a) Prove that the set $\{k \in \mathbb{N} : a^k = e\}$ is not empty.
- (b) Let $n \in \mathbb{N}$ be the least element of the set $\{k \in \mathbb{N} : a^k = e\}$ (which exists by part (a) and the well-ordering principle). Prove that if $i, j \in \{0, \dots, n-1\}$ such that $a^i = a^j$, then i = j.

(c) Prove that $\langle a \rangle = \{a^0, a^1, \dots, a^{n-1}\}.$

(Note: Parts (b) and (c) together show that |a| = n.)

Exercise 8. Determine if \mathbb{Q} is cyclic. Justify your answer.

*Exercise 9. Let $A \in GL(2, \mathbb{R})$.

- (a) Prove that if A has finite order, then $det(A) = \pm 1$.
- (b) Prove that if $\det(A) = 1$ and $|\operatorname{tr}(A)| > 2$, then A has a (real) eigenvalue λ such that $|\lambda| \neq 1$, where $\operatorname{tr}(A)$ denotes the *trace* of A.
- (c) Let A be as in part (b), so det(A) = 1 and |tr(A)| > 2. Use the existence of an eigenvalue (and hence an eigenvector) to prove that if det(A) = 1, then A has infinite order.

Exercise 10. Let G be a group

- (a) Let $a, g \in G$. Prove that $|a| = |gag^{-1}|$.
- (b) Let $a, b \in G$. Prove that |ab| = |ba|. (Hint: use part (a).)

Exercise 11. Let p be a prime number. Prove that \mathbb{Z}_p has exactly two subgroups, namely the trivial subgroup and itself.

*Exercise 12. Suppose G is a nontrivial group in which the only two subgroups of G are itself and the trivial subgroup.

- (a) Prove that G is cyclic.
- (b) Using part (a), prove that G is a finite group of prime order.

Exercise 13. Let p and q be distinct prime numbers.

- (a) How many generators does \mathbb{Z}_{pq} have? Justify your answer.
- (b) Let $r \in \mathbb{N}$. How many generators does \mathbb{Z}_{p^r} have? Justify your answer.

*Exercise 14. Let a be an element of a group. For $n, m \in \mathbb{Z}$, find a generator for the group $\langle a^m \rangle \cap \langle a^n \rangle$. Justify your answer.

Exercise 15. Let *a* and *b* be elements in a group with relatively prime orders. Prove that $\langle a \rangle \cap \langle b \rangle$ is the trivial subgroup.

****Exercise 16.** Let $p, q \in \mathbb{N}$ be relatively prime, and let G be an abelian group of order pq. Prove that if G contains elements of order p and q, then G is cyclic. **Exercise 17.** Let G be an abelian group. Show that the elements of finite order in G form a subgroup (known as the **torsion subgroup**).