Instructions. Read the Homework Guide to make sure you understand how to successfully complete the assignment.

Exercise 1. In Section 5.4 of the textbook, complete exercises 1, 2(a,b,c,d), and 4.

Exercise 2. Determine if each of the following subsets of S_4 is a subgroup or not.

- (a) $\{\sigma \in S_4 : \sigma(1) = 3\}$
- (b) $\{\sigma \in S_4 : \sigma(2) = 2\}$
- (c) $\{\sigma \in S_4 : \sigma(\{2,3\}) = \{2,3\}\}$

Exercise 3. Prove that the order of S_n is n! (recall that $n! = n(n-1)(n-2)\cdots 2\cdot 1$).

*Exercise 4. Choose examples of 2-, 3-, 4-, and 5-cycles, and compute the cyclic subgroups they generate. Use these examples to conjecture the order of a k-cycle. Prove your conjecture.

*Exercise 5. A 2-cycle is called a *transposition*. Prove that a k-cycle can be expressed as a product of k - 1 transpositions.

Exercise 6. For $n \ge 3$, prove that the center of S_n is trivial (that is, it only contains the identity element).

Exercise 7. Let σ be a k-cycle. Prove that k is odd if and only if σ^2 is a cycle.

****Exercise 8.** ***Oops***: This is the same as Exercise 16, but Exercise 16 is more scaffolded, so just do that one. Prove that any two k-cycles in S_n are *conjugate*, that is, if $\sigma, \tau \in S_n$ are k-cycles, then there exists $\mu \in S_n$ such that $\mu \sigma \mu^{-1} = \tau$.

Exercise 9. What are the possible cycle structures of elements in A_5 ? What about A_6 ?

*Exercise 10. Prove that in A_n with $n \ge 3$, any permutation is a product of cycles of length 3.

****Exercise 11.** Label the vertices of a *tetradhedron* by 1, 2, 3, and 4 (see Figure 1). For each of the permutations (123) and (12)(34) in A_4 , describe a rigid motion of the tetrahedron that induces the permutation.

Figure 1: A tetrahedron with vertices labelled.

Exercise 12. A series of questions dealing with cycles decompositions and orders.

- (a) Find all possible orders of elements in S_7 .
- (b) Find all possible orders of elements in A_7 .
- (c) Show that A_{10} contains an element of order 15.
- (d) Does A_8 contain an element of order 26?
- (e) What are the possible cycle decomposition structures of elements in A_5 ? What about A_6 ?

*Exercise 13. The goal of this exercise is to deduce the order of the alternating group A_n for $n \in \mathbb{N}$. Throughout the exercise, let B_n be the subset of S_n consisting of odd permutations (recall that A_n is the subgroup of S_n consisting of even permutations).

- (a) Prove that $A_n \cap B_n = \emptyset$.
- (b) Fix $\tau \in B_n$, and define $f: A_n \to B_n$ by $f(\sigma) = \tau \sigma$. Prove that f is a bijection.
- (c) Use the previous parts, together with the facts that $S_n = A_n \cup B_n$ and $|S_n| = n!$, to deduce that $|A_n| = \frac{n!}{2}$.

*Exercise 14. Let $n \in \mathbb{N}$. Prove that in A_n with $n \geq 3$, any permutation is a product of 3-cycles.

*Exercise 15. This exercises provides a more formal approach to a problem you worked on on an earlier homework. Let $\Gamma = (V, E)$ be the graph with $V = \mathbb{Z}$ and $(m, n) \in \mathbb{Z}$ if and only if |m - n| = 1. So, Γ is just the number line (a portion of which is drawn here):

The *infinite dihedral group*, denoted D_{∞} , is the automorphism group of the graph Γ . Let $\tau, \rho \in D_{\infty}$ be given by $\tau(n) = n + 1$ and $\rho(n) = -n$ for $n \in \mathbb{Z}$.

- (a) For $k \in \mathbb{Z}$, write down a formula for τ^k .
- (b) Prove that if $f \in D_{\infty}$ such that f(0) = 0 and f(1) = 1, then f is the identity. (Hint: Let's first focus on the natural numbers. Use strong induction: Let $k \in \mathbb{N} \setminus \{1\}$. Suppose that f(j) = j for all $0 \le j < k$ and prove that f(k) = k. A similar argument works for the negative integers.)
- (c) Prove that every element of D_{∞} can be written as either τ^k or $\tau^k \rho$ for some $k \in \mathbb{Z}$. (Hint: let $f \in D_{\infty}$. Use a power of τ to get f(0) back to 0, and then use ρ to get 1 back to itself if necessary.)

****Exercise 16.** Let $\tau = (a_1 a_2 \dots, a_k)$ be a k-cycle.

(a) Prove that if σ is any permutation, then

$$\sigma\tau\sigma^{-1} = (\sigma(a_1)\,\sigma(a_2)\,\ldots\,\sigma(a_k))$$

is a k-cycle.

(b) Let μ be a k-cycle. Prove that there is a permutation σ such that $\sigma \tau \sigma^{-1} = \mu$.