Instructions. Read the Homework Guide to make sure you understand how to successfully complete the assignment.

Exercise 1. Find five non-isomorphic groups of order 8. Justify why no two of them are isomorphic. (You will need to learn about the *quaternion group*, see Example 3.15 in the book.)

Exercise 2. Let G be a group of order 20. If G has subgroups H and K of orders 4 and 5, respectively, such that hk = kh for all $h \in H$ and $k \in K$, prove that G is the internal direct product of H and K.

- *Exercise 3. (a) Prove or disprove: there is a noncyclic abelian group of order 51. (Do not use the classification of finite abelian groups.)
- (b) Prove or disprove: there is a noncyclic abelian group of order 52.

Exercise 4. Prove that D_4 cannot be the internal direct product of two of its proper subgroups.

*Exercise 5. Recall that we can express each element of D_6 as a product of r and s, where $r, s \in D_6$ satisfy |r| = 6, |s| = 2, and $sr = r^{-1}s$; in particular, we have

$$D_6 = \{ \mathrm{id}, r, r^2, r^3, r^4, r^5, s, sr, sr^2, sr^3, sr^4, sr^5 \}.$$

Let $H = \langle r^3 \rangle$ and let $K = \{ \mathrm{id}, r^2, r^4, s, sr^2, sr^4 \}.$

- (a) Prove that D_6 is the internal direct product of H and K.
- (b) Show that K is isomorphic to S_3 .
- (c) Deduce that $D_6 \cong S_3 \times \mathbb{Z}_2$.

*Exercise 6. The goal of this exercise is to prove the following statement:

Every group of order four is isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Let G be a group of order 4. If G has an element of order 4, then it must be cyclic, and hence isomorphic to \mathbb{Z}_4 . So, assume that G does not have an element of order 4; the goal is now to prove that G is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

(a) Prove that every non-identity element of G has order two.

- (b) Let $g, h \in G$ be distinct elements. Let $K = \langle g \rangle$ and let $H = \langle h \rangle$. Prove that G is the internal direct product of H and K.
- (c) Use the above to prove that $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Exercise 7. Let G be a group, and let H and K be subgroups of G such that G is the internal direct product of H and K. Define the function $\varphi \colon H \times K \to G$ by $\varphi(h, k) = hk$. Prove that φ is an isomorphism.

Exercise 8. For each of the following groups, find all their subgroups, determine which are normal, and classify the corresponding factor groups up to isomorphism.

- (a) the dihedral group D_4 .
- (b) the quaternion group Q_8 .

*Exercise 9. Let T be the group of nonsingular upper triangular 2×2 matrices with entries in \mathbb{R} , that is, matrices of the form

$$\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$$

where $a, b, c \in \mathbb{R}$ and $ac \neq 0$. Let U consist of the matrices of the form

$$\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$$

where $x \in \mathbb{R}$.

- (a) Show that U is a subgroup of T.
- (b) Prove that U is abelian.
- (c) Prove that U is normal in T.
- (d) Show that T/U is abelian.
- (e) Is T normal in $GL(2,\mathbb{R})$?

Exercise 10. Prove that the intersection of two normal subgroups is a normal subgroup.

*Exercise 11. If a group G has exactly one subgroup H of order k, prove that H is normal in G.

**Exercise 12. Let G be a group. Given $a, b \in G$, define $[a, b] = aba^{-1}b^{-1}$, the group element [a, b] is called the *commutator* of a and b. The *commutator subgroup* of G, denoted [G, G], is the subgroup generated by the set of commutators, ie, it is the subgroup consisting of products of commutators.

(a) Prove that [G, G] is a normal subgroup of G.

- (b) Prove that G/[G, G'] is abelian.
- (c) Let N be a normal subgroup of G. Prove that G/N is abelian if and only if $[G,G] \subset N$. (The group G/[G,G] is called the *abelianization* of G.)

Exercise 13. Let $\varphi \colon G_1 \to G_2$ be a homomorphism.

- (a) Prove that $\varphi(G_1) = \{\varphi(g) : g \in G_1\}$ is a subgroup of G_2 .
- (b) Prove that if G_1 is abelian, then $\varphi(G_1)$ is abelian.
- (c) Prove that if G_1 is cyclic, then $\varphi(G_1)$ is cyclic.
- (d) Prove that if H is a subgroup of G_2 , then $\varphi^{-1}(H) = \{g \in G_1 : \varphi(g) \in H\}$ is a subgroup of G_1 .

Exercise 14. Let G be a cyclic group and let a be a generator of G. If $\varphi_1, \varphi_2 \colon G \to H$ are homomorphisms such that $\varphi_1(a) = \varphi_2(a)$, prove that $\varphi_1 = \varphi_2$.

Exercise 15. (a) Find all homomorphisms from \mathbb{Z} to \mathbb{Z}_6 .

- (b) Explain why there is no homomorphism from \mathbb{Z}_6 to \mathbb{Z}_4 that sends $\overline{1}$ in \mathbb{Z}_6 to $\overline{1}$ in \mathbb{Z}_4 .
- (c) Find all the homomorphisms from \mathbb{Z}_{24} to \mathbb{Z}_{18} .

Definition. The *kernel* of a homomorphism $\varphi \colon G \to H$, denoted ker φ , is defined by ker $\varphi = \{g \in G : \varphi(g) = e_H\}.$

*Exercise 16. Let $\varphi \colon G \to H$ be a homomorphism. Prove that ker φ is a normal subgroup of G.

*Exercise 17. Prove that homomorphism $\varphi \colon G \to H$ is injective if and only if ker $\varphi = \{e_G\}$.