Solutions

Problem 1. Let $n \in \mathbb{N}$ with n > 1, and let $a \in \mathbb{Z}$.

- (a) Prove that if gcd(a, n) = 1 and $b, c \in \mathbb{Z}$ such that $ab \equiv ac \pmod{n}$, then $b \equiv c \pmod{n}$.
- (b) Give an example of integers n, a, b, c such that $a \not\equiv 0 \pmod{n}$, $b \not\equiv c \pmod{n}$, and $ab \equiv ac \pmod{n}$.

Solution. (a) As $ab \equiv ac \pmod{n}$, we have that $n \mid (ab - ac)$, or equivalently, $n \mid [a(b - c)]$. Using that gcd(a, n) = 1, we can apply Euclid's lemma (or rather the version proved on HW1), to conclude that $n \mid (b - c)$. Hence, $b \equiv c \pmod{n}$, as desired.

(b) Let n = 4, a = 2, b = 1, and c = 3. Then ab = 2 and ac = 6. Therefore, $ab \equiv ac \pmod{n}$ but $b \not\equiv c \pmod{n}$.

Problem 2. Let G be a group. Prove that if $(ab)^2 = a^2b^2$ for all a and b in G, then G is abelian.

Solution. Let $a, b \in G$. We want to show that ab = ba. By assumption, $(ab)^2 = a^2b^2$, which we can write as abab = aabb. Multiplying both sides by a^{-1} on the left results in the equality bab = abb. Now, multiplying both sides by b^{-1} on the right results in the equality ba = ab, which is as desired.