Test 6

Solutions

Instructions.

Problem 1. Let G be a group of order 4. Suppose there exist distinct order two elements $g, h \in G \setminus \{e\}$. Let $K = \langle g \rangle$ and $H = \langle h \rangle$. Prove that G is the internal direct product of H and K.

Solution. By inspection, $H \cap K = \{e\}$. We claim that $G = \{e, g, h, gh\}$. If gh = e, then g = h, but $g \neq h$ by assumptions, so $gh \neq e$. If gh = g, then h = e, but $h \neq e$, so $gh \neq g$. Similarly, $gh \neq h$. As $gh \notin \{e, g, h\}$ and as G has 4 elements, $G = \{e, g, h, gh\}$. We can therefore see that G = KH. Finally, a similar argument shows that $hg \notin \{e, g, h\}$, and hence hg = gh, as gh is the only remaining element in G. Therefore, every element of H commutes with each element of K. We can now conclude that G is the internal direct product of H and K.

Problem 2. Let $\varphi \colon G \to H$ be a homomorphism. Prove that ker φ is a normal subgroup of G.

Solution. Let $a \in \ker \varphi$ and let $g \in G$. Then

$$\varphi(gag^{-1}) = \varphi(g)\varphi(a)\varphi(g^{-1})$$
$$= \varphi(g)e_H\varphi(g^{-1})$$
$$= \varphi(g)\varphi(g^{-1})$$
$$= \varphi(gg^{-1})$$
$$= \varphi(e_G)$$
$$= e_H$$

Therefore, $gag^{-1} \in \ker \varphi$ for all $a \in \ker \varphi$ and for all $g \in G$, implying that $\ker \varphi$ is normal.