Wednesday 3/19/2025	Exam 1	110 minutes
Name:	Solutions]

Instructions.

- 1. **Read each problem carefully.** Make sure you understand what the problem is asking.
- 2. Proofs can be informal: use of logical symbols and incomplete sentences **are** permitted. However, make sure all statements and logical steps are clear and correct.
- 3. You are allowed one 8.5" x 11" sheet of notes, written on the front and back. Your sheet may only contain theorem statements and definitions. You must turn in your note sheet with the exam.
- 4. No devices other than a writing utensil may be used.
- 5. Feel free to use the back of any sheet. Just make it clear where I am meant to look for your solutions.

Question	Points	Score
1	3	
2	3	
3	3	
4	6	
5	5	
6	4	
7	5	
8	7	
9	7	
10	7	
11	7	
Total:	50	

Exam 1

Part I: Computation and Understanding

1. 3 points Use the Euclidean algorithm to compute gcd(54, 120).

$$\begin{aligned} 20 &= 2 \cdot 54 + 12 \\ 54 &= 4 \cdot 12 + 6 \\ 12 &= 2 \cdot 6 + 0 \\ \Rightarrow gc 2(54, 120) = 6 \end{aligned}$$

- 2. 3 points Use the fact that $10^n \equiv (-1)^n \pmod{11}$ for each $n \in \mathbb{N}$ to show that 132539 is divisible by 11.
 - $\begin{array}{rcl} 132539 &\equiv& |\cdot|0^{5}+3\cdot|0^{4}+2\cdot|0^{3}+5\cdot|0^{2}+3\cdot|0+9\\ &\equiv& |\cdot|(\cdot|)^{5}+3(-1)^{4}+2\cdot(\cdot|)^{3}+5(-1)^{2}+3(-1)+9\\ &\equiv& -1+3-2+5-3+9\\ &\equiv& 11\\ &\equiv& 0 \mod |1 \implies |1| \left| 132539 \right. \end{array}$
- 3. 3 points List all the subgroups of \mathbb{Z}_6 and explain how you know that you have them all.

くる> = { ð } く 1 > = と5 > = Z6 く ネ > = く4 > = } つ , み , 4 }

Every subgroup of a cyclic group is cyclic, so the above list is all subgroups of IG.

- 4. 6 points For each of following pairs of sets and binary operations, give **one reason** why the pair is **not** a group.
 - (a) the natural numbers with addition, $(\mathbb{N}, +)$

(b) the integers with subtraction, $(\mathbb{Z}, -)$

Not associative $(1-1)-1 \neq 1-(1-1)$

(c) the rational numbers with multiplication, (\mathbb{Q}, \cdot)

O has no inverse, Q. O = 1 Vac Q.

- 5. 5 points In each of the parts, find the inverse of the element in the specified group.
 - (a) $\bar{4}$ in U(9) (Recall that, for $n \in \mathbb{N}$, $U(n) = \{\bar{a} \in \mathbb{Z}_n : \gcd(a, n) = 1\}$ is a group under multiplication modulo n.)

$$\overline{7} = \overline{4}^{-1}$$
, as $\overline{4.7} = \overline{28} = \overline{1}$

(b) $1 + \sqrt{2}$ in the group $(\mathbb{Q}(\sqrt{2}), +)$, where $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$

6. 4 points In each of the parts, find the order of the element in the specified group. In each case, the order is finite.

(a)
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 in SL(2, Z).

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{2} : \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}^{2} : \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{2} : \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = 4$$
(b) \overline{E} (c) \overline{C} (c)

(b) $\overline{54}$ in \mathbb{Z}_{120} (Your answer from Question 1 should be helpful; the order is too big to find by brute force).

7. 5 points Explain why each of the following groups is **not** cyclic.

(a)
$$U(8) = \{7, 3, 5, 7\}$$

 $\langle i \rangle \in \{7, 7\}$
 $\langle i \rangle \in \{7, 3\}$
 $\langle i \rangle \in \{7, 3\}$
 $\langle i \rangle \in \{7, 3\}$
 $\langle i \rangle \in \{7, 5\}$
 $\langle i \rangle \in \{1, 5\}$
 \langle

(b) $(\mathbb{Q}, +)$

Let
$$P/q \in \mathbb{Q}$$
. As $CP/q^{2} \in CP/q^{2}$, we can assume $P/q^{2} > 0$.

For
$$k \in \mathbb{Z}$$
, cither $k \cdot p/q \ge p/q$ or $k \cdot p/q \le -p/q$.
Therefore, $\langle P/q \rangle \neq Q$ as $p/q \not\in \langle P/q \rangle$.

Part II: Proofs

Instructions: Complete any three of the following four problems.

8. 7 points Let $n \in \mathbb{N}$ and $a \in \mathbb{Z} \setminus \{0\}$ be relatively prime. Prove that if $b \equiv a \pmod{n}$, then b and n are relatively prime. (***This is an easier version of a homework problem: do not reference any homework exercises in your proof.)

9. 7 points Let $p, q \in \mathbb{N}$ be prime numbers. Prove that \mathbb{Z}_{pq} has $pq \neq 3$ generators.

- Exam 1
- 10. $\boxed{7 \text{ points}}$ Let *a* and *b* be nonzero integers, and let d = gcd(a, b). Prove that an integer *c* is a linear combination of *a* and *b* if and only if $d \mid c$.

(=>) It c is a linear combination of a and b, then F s, tez so that c=as+bl. As dla and dlb, dl(as+bt). Itence, dlc

(E) As
$$d=gcd(a,b)$$
, $\exists s,t\in\mathbb{Z}$ so that $d=as+bt$.
As $d|c$, $\exists g\in\mathbb{Z}$ s.t. $c=dg$
 $\exists c=dg=g(as+bt)=a(gs)+b(sg)$
 $\exists c=dg=g(as+bt)=a(gs)+b(sg)$
 $\exists c=dg=g(as+bt)=a(gs)+b(sg)$

The center of a group G, denoted
$$\Sigma(G)$$
, is the set

$$Z(G) = \{ a \in G : ag = ga \text{ for all } g \in G \}.$$

Prove that Z(G) is a subgroup of G.

We need to show $e \in Z(G)$ and that Z(G) is closed under the group operation and massion. $\forall g \in G, eg = ge$, so $e \in Z(G)$. Now, let $a, b \in Z(G)$. Then $\forall g \in G$, (ab) g = a(bg) = a(gh) = (ag)b = g(ab) $\Rightarrow ab \in Z(G) \Rightarrow Z(G)$ is closed under the group operation. Finally, let $a \in Z(G)$. Then $\forall g \in G$, $ag^{-1} = g^{-1}a$ $\Rightarrow (ag^{-1})^{-1} = (g^{-1}a)^{-1} \Rightarrow ga^{-1} = a^{-1}g \Rightarrow a^{-1} \in Z(G)$

=> Z(G) is closed under inversion. []